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Data fusion methods commonly use and compare all the documents returned by multiple retrieval 
systems to create a new result list. On the one hand, as documents further down in the result lists 
are considered, a document’s probability of being relevant decreases significantly. On the other 
hand, retrieval systems tend to find similar relevant documents when searching the same 
database, but they do not find them in the same rank positions. Thus, data fusion methods need 
to consider all of the documents returned by the retrieval systems. Using TREC 3, 6, 7, 8, 12 and 
13 data, this paper examines how “skimming”, where the number of documents examined in the 
result lists is gradually increased, can help to identify relevant documents. It is shown that 
“gradual skimming” and what can be learned as the list depth is increased can help to improve 
the retrieval effectiveness of data fusion methods. 

Introduction 
The goal of data fusion is to combine the result lists of multiple retrieval systems to produce a new 

ordering of the documents that moves potentially relevant documents further toward the top of the fused 
result list and non relevant ones toward its bottom (Fox & Shaw 1994, Callan, 2000). According to 
www.dictionary.com, to “skim” can refer to a) “removing cream” from the top of milk or b) to “take the best 
items” from a collection of things. Both these meanings apply in the context of data fusion. The latter 
meaning refers to the fact that data fusion aims to identify the relevant documents contained in multiple 
result lists. The former meaning corresponds to the fact that the relevant documents tend to be located at 
the top of a result list. A key problem data fusion methods have to solve is how to identify relationships 
between the different result lists that make it possible to detect all or many of the relevant documents 
(high recall) and move relevant documents closer toward the top of the fused result list (high precision). 
These relationships can be easily computed: a) the number of lists that contain the same document and 
b) the average of a document’s different positions in the lists that contain it. Many of the most effective 
data fusion methods use these relationships to decide how best to merge the result lists (Fox & Shaw, 
1994; Lee 1997). Further, it is possible to compute these relationships between the result lists as the 
number of documents examined in the lists, called the list depth, is gradually increased. A contribution of 
this paper is that it shows the potential of “gradual skimming” to improve data fusion. 

The work described in this paper is part of a research program that investigates what can be learned by 
only comparing and analyzing the result lists of different retrieval systems searching the same database 
without the need for any other sources of information or analytical tools (Spoerri 2005, 2006a, 2006b). 
Specifically, Spoerri (2005, 2006b) has shown that a document’s probability of being relevant increases 
exponentially as the number of systems retrieving it increases – called the Authority Effect. Further, he 
has shown that a document placed higher up in multiple result lists and found by more systems is more 
likely to be relevant – called the Ranking Effect. Thus, easily observable relationships between the 
different lists can be used to identify potentially relevant documents. Spoerri (2006a) has also shown that 
the Authority and Ranking Effects are present as the list depth is increased, but the total number of 
relevant documents found by the systems affects when the Ranking Effect fully emerges. This paper 
examines how gradually increasing the list depth can improve the ability to identify relevant documents. 

Data fusion methods commonly use all the documents returned by different retrieval systems. It can be 
argued that “more is better” and the fact that a document is found by many systems, although placed by 
some toward the bottom of their result lists, provides very useful information to identify relevant 
documents. Specifically, retrieval systems tend to find similar relevant documents when searching the 
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same database, but they do not find them in the same rank positions (Spoerri, 2006a). This suggests that 
data fusion methods are well advised to consider all of the documents returned by the retrieval systems. 
However, retrieval methods aim to place the potentially relevant documents toward the top of their result 
lists and as documents further down in the result lists are considered, a document’s probability of being 
relevant decreases significantly. Using Text REtrieval Conference (TREC) 3, 6, 7, 8, 12 and 13 data, this 
paper addresses the problem of how the information gained for documents that are contained in the top 
of the lists and found by many systems is not “diluted and lost” as the list depth is increased and an 
increasing number of non-relevant documents are found by many systems, thus introducing a major 
source of noise. In the context of the “skimming cream” analogy, this paper investigates how to ensure 
that more relevant documents stay and/or raise to the top as gradually more documents are examined. 

This paper is organized as follows: first, related work is discussed. Second, the methodology employed 
is described. Third, data is presented that estimates a document’s probability of being relevant as a 
function of list depth, the number of systems that have found it and its average rank position. Fourth, it is 
shown how “gradual skimming” is able to improve the retrieval effectiveness of data fusion. Fifth, it is 
discussed how “gradual skimming” could be used to develop more effective data fusion methods. 

Related Work 
Prior research relevant or related to the work presented in this paper falls into two categories: 1) 

research providing direct support for the Authority and Ranking Effects; 2) methods proposed for fusing 
multiple results lists. 

Spoerri (2005) summarized previous research that provides indirect support for the Authority and 
Ranking Effects (Saracevic & Kantor, 1988; Turtle & Croft, 1991; Foltz & Dumais, 1992; Belkin et al., 
1993). He conducted a systematic analysis of the overlap between the search results of the retrieval 
systems that participated in the short tracks in TREC 3, 6, 7 and 8. He provides direct support for the 
Authority and Ranking Effects by demonstrating that a document’s probability of being relevant is 
correlated to the number of retrieval systems that find it and the document’s positions in the lists that 
contain it. Spoerri (2006a) extends this study by also analyzing data from the manual and long tracks in 
TREC 6, 7 and 8. Both analyses showed that a document’s probability of being relevant increases expo-
nentially as the number of systems retrieving it increases, thereby providing direct support for the 
Authority Effect. It was also demonstrated that the placement of the relevant documents in ranked lists is 
not a random process. Instead, as the number of systems retrieving the same relevant document 
increases, a relevant document is increasingly located toward the top of the systems’ lists. Finally, it was 
shown that a document’s probability of being relevant increases greatly as more systems find it and the 
higher up it is placed in the multiple ranked lists that contain it, thereby providing direct support for 
Ranking Effect. 

Support for Authority and Ranking Effects 

Spoerri (2006a) also studied how varying the number of documents examined in the results (list depth) 
impacts the Authority and Ranking Effects. He analyzed the overlap between the search results of 
retrieval systems that participated in the ad hoc track in TREC 3, 7 and 8, the robust track in TREC 12 
and the web track (distillation task) in TREC 13. First, as noted above, it was demonstrated that the 
retrieval systems find similar relevant documents, but they do not find them in the same rank positions or 
at the same list depth levels. Specifically, it was shown that the relevant documents are gradually found 
by more systems and the number found only by a single system decreases rapidly as the list depth is 
increased. Second, it was shown that the Authority Effect is present at all list depth levels. Third, it was 
shown that the Ranking Effect is present at all list depth levels, but if the systems in the same TREC year 
retrieve a large number of relevant documents, then the Ranking Effect only begins to emerge as more 
systems have found the same document and/or the list depth increases (as will be discussed in the 
Results section). Fourth, it was demonstrated that the Authority and Ranking Effects are not an artifact of 
how the TREC test collections have been constructed, where only top 100 documents are pooled and 
examined to identify relevant documents. Specifically, it was shown that the majority and increasing 
percentage of new documents, which are found at a specific list depth, are only found by a single system 
and very few new documents are found by more than 3 or 4 systems for list depths greater than 100 and 
approaching 1000 documents. This implies that the unjudged relevant documents will be found by few 
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systems at most, only to be “overshadowed” by the many non-relevant documents found by few systems, 
and thus will not impact the Authority and Ranking Effects for documents found by many systems.  

Many and some of the most effective data fusion methods use merging and voting methods, where 
documents that are found by multiple methods and placed high up in the respective lists are promoted. 
Specifically, Fox and Shaw (1994) introduced a set of major methods for combining multiple results sets, 
such as CombMNZ and CombSUM. When a document is found by a system, it receives a retrieval score 
and has a specific position in the ranked list returned by the system. Further, a document can be found by 
multiple systems. If a document’s retrieval scores or rank positions are normalized to a score between 0 
and 1 (the higher up in the result list, the greater the score), then the sum of a document’s scores will be 
less or equal to the number of systems retrieving it. CombSUM only sums a document’s scores. 
CombMNZ sums a document’s scores by the different systems that find it and then multiplies this sum by 
the number of systems that retrieve the document. CombMNZ and CombSUM exploit to varying degrees 
the Authority and Ranking Effects. Both of them make use of the Ranking Effect, because they sum the 
normalized rank positions – the higher up a document in multiple lists, the greater the sum. This summing 
operation also incorporates the Authority Effect, because the more systems that find a document, the 
more scores are added. The Authority Effect is more dominant for CombMNZ than for CombSUM, since 
CombMNZ multiples CombSUM by the number of systems that find a document. Lee (1997) 
demonstrated that CombMNZ performs best, followed by CombSUM, in terms of  retrieval effectiveness. 
CombMNZ has proven to be an effective fusion method that it is used by many researchers as the 
baseline method to compare with their newly developed fusion methods.  

Data Fusion Methods 

Aslam and Montague (2001, 2002) developed two fusion methods that make use of democratic voting 
methods that can deal with few voters (retrieval systems) and many candidates (documents). The Borda-
fuse method (Aslam & Montague, 2001) assigns a score to each document that is related to the sum of 
its positions in each result list that contains it, making Borda-fuse very similar to CombSUM. The 
Condorcet-fuse method (Montague & Aslam, 2002) ranks documents based on a pair-wise comparison of 
their rank positions. A document is ranked above another if it appears above it in more result sets. 

Vogt and Cottrell (1999) refer to the phenomenon described by the Authority Effect as the “Chorus 
Effect” and they also suggest that the “Skimming Effect” plays a role in data fusion. The latter effect refers 
to the fact that multiple result sets are more likely to result in a larger number of relevant documents 
being included in the fused list than when only a single list is considered. Thus, a data fusion method can 
“skim” the top documents from each result list, since many the relevant documents are located toward the 
top of the lists. Vogt & Cottrell’s analysis of the pair-wise comparison of result lists showed that the 
Authority Effect tends to be the dominant effect. Further, Lillis et al. (2006) have developed probFuse, 
which uses a probabilistic approach to data fusion and exploits the Skimming Effect with some success. 
A contribution of this paper is that it provides insight into how “skimming” can help to improve the 
effectiveness of data fusion methods because it “sharpens” the Ranking Effect. 

Methodology 
The TREC workshops provide IR researchers with a controlled setting, a set of search topics and, most 

importantly, human relevance judgments to make it possible to compare and analyze the effectiveness of 
different retrieval methods that search the same large document collections (Voorhees & Harman, 1994, 
1997, 1998, 1999; Voorhees, 2003, 2004; Craswell & Hawking, 20040. This paper uses the ranked lists 
returned by the retrieval systems that took part in the ad hoc track in TREC 3, 6, 7 and 8, the robust track 
in TREC 12 and the web track (distillation task) in TREC 13 to examine what can be learned as the list 
depth is varied to identify relevant documents and improve data fusion effectiveness. First, these tracks 
were chosen, because they represent a diverse subset of all the TREC years, where the retrieval 
systems participating in the selected years search different document collections for the different 50, 75 
and 100 provided topics in the ad hoc, web (distillation task) and robust tracks, respectively. Second, the 
systems in the chosen tracks submit a ranked list (also called a run) of usually 1000 documents per topic 
for evaluation, which provides data fusion methods with a large number of documents to fuse as well as 
makes it possible to study what can be learned as the list depth is gradually increased. In order to identify 
the relevant documents, the top 100 retrieved documents (or the top 125 documents for topics 51 – 100 
in the TREC 12 Robust track) are pooled from each result list per topic and then a TREC evaluator 
determines the relevance of each document in the pool. The systems are evaluated based upon different 
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measures of recall and precision. Recall assesses the fraction of relevant documents that were found by 
a system, while precision assesses the fraction of a system’s retrieved documents that are relevant. The 
average precision for a specific topic is the mean of the precision after each relevant document is found. 
The mean average precision for all topics is the mean of the average precision scores. The retrieval 
effectiveness of retrieval systems is measured in terms of the mean average precision achieved. 

Each system participating in TREC can submit multiple runs for evaluation. A run can either be 
automatic or manual. For the former, the query is created without human intervention based on the 
complete topic statement (called a long run) or only the title and description fields (called a short run). In 
this paper, the short runs in TREC 3, 6, 7 and 8 are used, because a greater number of systems 
submitted short runs (Voorhees & Harman, 1994; 1997, 1998; 1999). The TREC 12 Robust track is 
chosen, since the 100 topics used in this track consist of 50 topics selected from the ad hoc tracks in 
TREC 6-8 that proved especially difficult for most retrieval systems and 50 new topics that were selected 
with the expectation to be difficult as well (Voorhees, 2003). This makes it possible to examine the 
potential benefits of “gradual skimming” for poorly performing topics. For the TREC 13 Web track, the 75 
distillation topics are chosen, since for these topics the systems needed to find more than one relevant 
web page and tend to return 1000 documents per topics (Voorhees, 2004; Craswell & Hawking, 2004). 
The selected ad hoc, robust and web TREC tracks make it possible to investigate what can be learned to 
help identify relevant documents in diverse and difficult settings.  

In this paper, only one run of the runs submitted by the same systems is considered. Specifically, the 
“best” run with the highest mean average precision is used in this study (but any run submitted by a 
system could be used). This greatly reduces the noise introduced if multiple runs by the same system are 
included in the analysis (Wu & Crestani, 2003). There are 18 (19), 24, 25 (28), 35, 16 (17) and 11 (17) 
best runs for TREC 3, 6, 7, 8, 12 and 13 respectively, that are analyzed in this paper. The numbers in 
brackets indicate the total number of different systems, and some systems were not included in this study 
because they submitted significantly less than 1,000 documents on average per topic. Once the best run 
for each system has been identified, the overlap between the result sets of the different systems in the 
same year is computed for each topic. Next, averaging across all topics, the number of documents found 
by a specific number of systems is computed for all documents (relevant and non-relevant) and all 
relevant documents, respectively. The average number of unique relevant documents found per topic is 
188, 78, 85, 87, 72, 33 and 21 for TREC 3, 6, 7, 8, 12a (topics 1 – 50), 12b (topics 51 – 100) and 13, 
respectively. TREC 3 has more than double the average number of relevant documents found per topic 
than TREC 6, 7, 8 or 12a (topics 1 – 50); six and nine times the average number of relevant documents 
than TREC 12b (topics 51 – 100) and TREC 13, respectively. As noted above, Spoerri (2006a) showed 
that the number of relevant documents in a TREC year affects when the “regular” Ranking Effect occurs 
as the list depth is increased (see Fig.1 and the graph for the Top 50 documents). 

As mentioned, Spoerri (2006a) studied how varying the number of documents examined in the ranked 
results (list depth) impacts the Authority and Ranking Effects. He presented empirical data of a 
document’s probability of being relevant as a function of the list depth level used (top 50 to 1000 
documents with a document step size of 50), the number of systems that have found it and its average 
rank position in the lists containing it. This paper additionally examines the smaller list depths of the top 
10, 20, 30 and 40 documents, which makes it possible to better identify the many relevant documents 
that tend to be located at the very top of a result list. 

Estimating A Document’s Probability of Being Relevant 

In order to estimate a document’s relevance probability as a function of list depth, the number of 
systems that have found it and its average rank position, the following steps are taken. First, the result 
sets of all the systems in the same TREC year are compared and the average number of documents 
found by 1, 2, 3, …or all systems is computed for each topic. If a document is found by multiple systems, 
then it will have multiple rank positions, which need to be averaged. The rank position is normalized so 
that the top document has a value of 1 and the very bottom document has a value of 1 divided by the 
ListDepth, which is equal to the maximal number of documents currently being compared. Specifically, a 
document i with the rank position in the result list of system S(j), called doc(i)_RankPos_S(j), will have a 
normalized rank position that is equal to 1 – ((doc(i)_RankPos_S(j) – 1) / ListDepth). For example, if 
ListDepth is equal to the top 50 documents, then the document in the 11th rank position will have a 
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normalized rank value equal to 0.80. If a document is found by multiple systems, then its multiple 
normalized rank positions are averaged. If a document has an average normalized rank position equal to 
1, then this implies that it is the top document in all the ranked lists that contain it. Conversely, if a 
document has an average normalized rank position close to 0, then this implies that it is located close to 
the bottom of the list depth currently being used.  

Second, the documents found by a specific number of systems are placed into different buckets based 
their average normalized rank values. The range of consecutive rank positions that are collected in the 
same bucket is equal to the list depth divided by 10 for list depths equal to 10, 20, 30, 40 or 50 top 
documents. For list depths equal or greater than 100, a range equal to the list depth divided by 20 is used 
(i.e., if ListDepth is equal to 500, then 25 consecutive rank values are aggregated). For example, a 
document with an average rank position of 21 will be placed in the bucket that aggregates the documents 
with average rank positions of 1 to 25 (or in terms of normalized rank positions, a value of 0.96 will be 
aggregated with the values ranging from 0.952 to 1.0). Thus, a fixed number of buckets are used to 
estimate the probability distribution instead of using a fixed number of consecutive rank positions. 

Third, for each bucket, the probability that a document is relevant is estimated by dividing the number of 
relevant documents by the total number of documents in a bucket. As noted above, the data from all the 
topics is then averaged. It is required that at least three topics have documents in the same bucket so 
that a few data points cannot introduce spurious effects when the percentage of documents that are 
relevant is calculated. The rank positions are normalized and documents placed in consecutive buckets 
to make it possible to “stitch together” the relevance plots for documents found by a specific number of 
systems and their average rank positions. Specifically, a graph can be created, whose x-axis has 
continuous values ranging from 1 to the maximum number of systems being compared in a TREC year 
(see Fig. 1). Each segment along the x-axis represents the documents found by a specific number of 
systems. Further, the average normalized rank value increases from left to right in each segment. The 
number of systems that found a document and its average normalized rank position determine a 
document’s position along the x-axis. For example, using a ListDepth equal to 50 documents, a 
document, which is found by 20 systems and has an average rank position of 11, will have a normalized 
rank value of 0.80 and will be located toward to the right end of the segment with label ‘‘20’’ in Fig. 1, 
since it will have a value of 20.80 on the x-axis. The steps just described make it possible to visualize in a 
compact way the percentage of documents that are relevant as a function of the number of systems that 
find them, their average rank positions and list depth.  

This paper addresses the question of what can be learned to improve the ability to identify relevant 
documents as the list depth is gradually increased. To achieve this goal, it is important to track and not to 
lose the relevance estimates inferred for documents already encountered at a shallow list depth as 
gradually more documents located further down in the result lists are included in the comparison 
computation. At the same time, more documents will be found by multiple systems as the list depth is 
increased, which in turn may make it possible to infer a higher relevance probability for such documents. 
Thus, as the list depth is gradually increased, a document’s probability of being relevant at a specific list 
depth will be set equal to the maximum of the probability estimates inferred at the list levels examined so 
far. This will make it possible to construct a “best case” scenario of what can be learned as the result lists 
are gradually skimmed.  

Results 
If the 35 systems in TREC 8 are compared, then Figure 1 displays the average percentage of 

documents that are relevant as a function of the number of systems retrieving them and the average of 
their rank positions for the list depths of the top 50 (grey line) and top 1000 (black line) documents, 
respectively. The ascending “saw tooth” patterns in Figure 1 illustrate that as both the number of systems 
retrieving the same document and the average of its normalized rank positions increases, the probability 
that the document is relevant tends to increase. Within a segment, which contains documents found by 
the same number of systems, the relevance probability tends to increase from left to right as the average 
normalized rank value increases from left to right in each segment. However, if a list depth of the top 50 
documents is used, then a document, which is found by few systems and has a low average rank 
position, has a greater probability of being relevant than a document with a high average rank position. 
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This is the opposite result than predicted by the Ranking Effect (see gray graph in Fig.1). Once a list 
depth of 250 or more documents is used, then the “regular” Ranking Effect occurs for all segments, as 
shown by the black graph in Figure 1, which plots the probability distribution for a list depth of 1000 
documents. Spoerri (2006a) provides a more detailed presentation of how the probability distribution 
changes as the list depth is increased for the TREC 3, 6, 7, 8, 12 and 13 (and how the number of relevant 
documents found in a TREC year affects the Ranking Effect). For the purpose of this paper, it is worth 
observing in Figure 1 that, as the list depth increases, the “saw tooth” pattern shifts to the right as 
documents found by few systems become increasingly less likely to be relevant and more documents are 
found by (almost) all systems. Figure 1 shows how a large percentage of relevant documents is located 
toward the top of the result lists and that the ability to identify relevant documents decreases as the list 
depth is increased. Specifically, if a list depth of the top 50 documents is used, then a document in the 
very top of the result lists and found by many systems has a very high probability of being relevant, 
whereas the ability to identify relevant documents decreases if all 1000 documents are compared.  

The goal of this paper is to investigate how to have more relevant documents “stay and/or float” to the 
top of the fused list as gradually more documents are compared and “skimmed”. As the list depth is 
increased, it is important not to lose track of the relevance estimates inferred for documents already 
encountered at a shallow list depth. At the same time, more documents will be found by multiple and an 
increasing number of systems as the list depth is increased, which in turn may make it possible to infer a 
higher relevance probability for such documents. Thus, a document’s relevance probability at a specific 
list depth level is set equal to the maximum of the relevance estimates assigned at the list levels 
examined so far. This way the information gained for documents that are contained in the top of the lists 
and found by many systems is not “diluted and lost” as the list depth is increased and a growing number 
of non-relevant documents are returned by many systems. To measure what can be learned as the list 
depth is gradually increased, it is useful to compute the difference between the maximum relevance 
estimate, which is inferred if the list depths of the top 10, 20, 30, 40, 50, 100, 200, … ,1000 documents 
are gradually compared, and the ALL 1000 relevance estimate, which is equal to the percentage of the 
top 1000 documents that are relevant. Figure 2 displays the difference between the “maximum” and “ALL 
1000” relevance estimates as a function of the number of systems that have found them and their 
average rank positions for TREC 3, 6, 7, 8, 12a (topics 1 – 50), 12b (topics 51 – 100) and 13, 
respectively. It is worth noting that the two distributions being compared are computed in slightly different 
ways. The “maximum” relevance estimate for a bucket is equal to the average of the maximum relevance 
estimates assigned to the documents in the same bucket. The “ALL 1000” relevance estimate for a 
bucket is computed by dividing the number of relevant documents by the number of all documents 
contained in a bucket. 

What Can be Learned As List Depth is Increased 

Figure 2 shows that the information that can be learned as the list depth is gradually increased helps to 
“sharpen” the Ranking Effect. The information gained helps to significantly increase a document’s 
estimate of being relevant if it is placed very high up the lists that contain it, especially if it has been found 
by many, but not necessarily all systems. The gains are greatest for TREC 3, which contains more than 
double the number of relevant documents than TREC 6, 7, 8 or 12a; six and nine times the average  
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Fig 1: Plots of the percentage of TREC 8 documents that are relevant based on the number of systems retrieving 
them and the average of their rank positions for the list depths of the top 50 (grey line) and top 1000 (black line) 
documents, respectively. 
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Fig 2: displays what can be learned if the list depth is gradually increased by plotting the difference between the 
“maximum” and “ALL 1000” relevance estimates as a function of the number of systems that have found them and 
their average rank positions for TREC 3, 6, 7, 8, 12a (topics 1 – 50), 12b (topics 51 – 100) and 13, respectively. 
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number of relevant documents than TREC 12b and TREC 13, respectively. The gains are smallest for 
TREC 13, which contains the smallest number of relevant documents. The more relevant documents 
found in a TREC year, the greater the gains to be expected by “gradual skimming.” 

The reason for studying what can be learned as the result lists are gradually “skimmed” is to gain 
insights into how data fusion can be performed more effectively. Thus, the unique documents for each 
topic are sorted based on the “maximum” relevance estimates assigned to them, which will be referred to 
as the BestCase fusion method. This method is not equivalent to knowing which specific documents are 
actually relevant, but instead it uses the maximum of the empirical relevance estimates and it represents 
what can at best be expected in terms of fusion effectiveness when using voting and merging methods. In 
this paper, the retrieval effectiveness of the “BestCase” method is compared to the effectiveness of the 
ALL1000 method, which uses the “ALL 1000” relevance estimates (shown as the black line in Figure 1 for 
TREC 8). Once the sorted lists are generated for the “BestCase” and “ALL1000” methods, respectively, 
the first 1000 documents are used to produce a fused list for each method. The mean average precision 
(MAP) score is calculated for each fused list. Figure 3 displays the MAP scores for “BestCase”, 
“ALL1000” and the best system (BestSys) in each TREC year. As is to be expected, the MAP score for 
“BestCase” is greater than all the other scores for all years and the average MAP improvement of 
“BestCase” with respect “BestSys” is more than 25% for the TREC years studied in this paper. The bar 
chart in Figure 3 visualizes the orderly relationship between the MAP scores for “BestCase”, “ALL1000” 
and “BestSys”, where the bar heights are decreasing from left to right for each TREC year (except for 
TREC12b, where “BestSys” has a greater MAP score than “ALL1000”). Figure 3 suggests that “gradually 
skimming” the different result lists holds the potential to produce more effective fusion methods. It also 
provides an insight into the effectiveness improvement that can be expected if the result lists are 
gradually fused.  

Discussion and Future Work 
To be able to take advantage of the benefits of “gradual skimming” in practice, a model needs to be 

developed that can be used to estimate a document’s relevance probability based on the number of 
systems that found it, its average normalized rank positions and the list depth used. Preliminary research 
shows that a combination of piecewise linear and exponential functions can be used to approximate the 
Ranking Effect for a diverse set of TREC data. The Authority Effect can be modeled by using an 
exponential function. This makes it possible to develop a (relatively) simple model of a document’s 
probability of being relevant, where the key variables depend in a predominately linear fashion on only 
one a priori variable, namely the average number of relevant documents found per topic. Future research 
will a) investigate how to generalize this preliminary model so that it can accommodate any number of 
systems being compared and b) experiment with different ways to estimate the average number of 
relevant documents found per topic. Ongoing research suggests that the more accurately a data fusion 
method is able to capture the exact nature of the Authority and Ranking Effects as well as leverage what 
can be learned as the list depth is gradually increased, the greater its retrieval effectiveness.  

Fig 3: displays the mean average precision (MAP) scores for BestCase, ALL1000 and BestSys. 
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Figure 2 shows that for documents only found by one system, which is the great majority of all the 
documents returned by the systems in the same TREC year, a weak Ranking Effect can be observed (it 
is strongest for TREC3, since it contains the greatest number of relevant documents of the TREC years 
studied in this paper). When fusing multiple result lists, this will have the effect of moving highly ranked 
found by a single system further up in the fused list, which in turn helps to improve the fused list’s 
precision. The use of the “maximum” relevance estimates will cause very highly ranked documents only 
found by a single system to move further up in the “BestCase” fused list. This helps to improve the 
precision of the fused list, yet at the same time it also promotes more non-relevant documents, since the 
probability of such “single system” documents being relevant is usually less than 10%. This can have the 
effect of pushing out of the fused list of 1000 documents some of the relevant documents that would 
otherwise be located toward the bottom of the list.  

Conclusion 
A key challenge in data fusion is how to identify relationships between the different result lists that make 

it possible to detect all or many of the relevant documents (high recall) and to move relevant documents 
closer toward the top of the fused result list (high precision). Since retrieval systems searching the same 
database tend to find similar relevant documents, but not in the same rank positions, data fusion methods 
benefit from comparing all the documents found by the different retrieval systems. However, a major 
source of noise is introduced in the fusion process as documents further down in the result lists are 
considered, since a document’s probability of being relevant decreases significantly. Using TREC 3, 6, 7, 
8, 12 and 13 data, this paper examined how “gradual skimming”, where the number of documents 
examined in the result lists is gradually increased, can help to ensure that more relevant documents stay 
and/or raise to the top in the fused list as steadily more documents are examined. The selected ad hoc, 
robust and web TREC tracks made it possible to investigate the benefits of “skimming” in diverse and 
difficult settings.  

First, empirical data was presented about a document’s probability of being relevant as a function of the 
list depth level used, the number of systems that have found it and its average rank position in the lists 
containing it. Second, this data was used compute a document’s “maximum” relevance probability, which 
is equal to the maximum of its probability estimates as the list depth is gradually increased. This way the 
information gained for documents that are contained in the top of the lists and found by many systems is 
not “diluted and lost” as the list depth is increased and an increasing number of non-relevant documents 
are found by many systems. Third, the difference between the “maximum” relevance estimates (inferred if 
the list depths of the top 10, 20, 30, 40, 50, 100, 200, … , 1000 documents are gradually compared) and 
the “ALL 1000” relevance estimates (equal to the percentage of the top 1000 documents that are 
relevant) was computed to measure what can be learned as the list depth is gradually increased. It was 
shown that “gradual skimming” helps to “sharpen” the Ranking Effect, since a document’s estimate of 
being relevant is greatly increased if the document is placed very high up the lists that contain it and it is 
found by many systems. Fourth, the “maximum” and “ALL 1000” relevance estimates were sorted to 
produce new fused result lists, called “BestCase” and “ALL1000”, respectively. The mean average 
precision (MAP) scores were calculated for the result lists of “BestCase”, “ALL1000” and the best system 
(“BestSys”) in a TREC year, where the average MAP improvement of “BestCase” with respect to 
“BestSys” was more than 25% for the TREC years studied in this paper. The presented results suggest 
that “gradual skimming” and using what can be learned as the list depth is gradually increased holds the 
potential to produce more effective data fusion methods. 
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